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Key Messages

(i) Safeguarding the Essential Biodiversity and Services 

of Amazonian Freshwater Ecosystems. The Amazon Basin 

plays a pivotal role in hydrological cycling, recycling 24% to 

35% of its water annually and contributing significantly to 

continental rainfall through ‘aerial rivers’ that transport 6,400 

km³ of water each year. This basin also discharges an average 

of 1,122 megatons (Mt) of suspended sediments annually, 

crucial for soil fertility and Atlantic Ocean ecosystem function 

and services, such as fisheries. Additionally, the region’s 

freshwater ecosystems boast remarkable biodiversity, with 

approximately 2,700 fish species, from which 1,696 are endemic 

[1]. These ecosystems are vital for the livelihoods of Amazonian 

communities, where daily per-capita fish consumption can 

exceed 500 g, one of the highest rates globally.

(ii) Maintaining River Connectivity is Critical for Sustaining 

Amazonian Freshwater Ecosystems.  Maintaining the 

multi-dimensional connectivity within Amazonian Freshwater 

Ecosystems is crucial for sustaining ecological processes, water 

recycling, biological and cultural diversity, and the resilience of 

the entire basin. This connectivity encompasses longitudinal, 

lateral, vertical, temporal, biocultural, and socio-bioeconomic 

dimensions. Numerous drivers of change in Amazon waters 

disrupt these vital connections. There is an urgent need for 

comprehensive management and proactive regional policies 

to protect the Amazonian Freshwater Ecosystems. 

(iii) Rapid degradation of Amazonian Freshwater 

Ecosystems. Amazonian Freshwater Ecosystems are 

experiencing rapid degradation due to a confluence of 

factors, including water pollution, oil spills, informal and illegal 

mining, dam construction, water diversions, deforestation, 

overfishing, and climate change. These elements not only 

sever vital ecological connections within the Amazon’s 

freshwater systems, but also drastically diminish their 

Andrea C. Encalada, Adalberto L. Val, Simone Athayde, Jhan Carlo Espinoza, Marcia Macedo, Mirian Marmontel, 
Guido Miranda, Maria Tereza Fernandez Piedade, Tiago da Mota e Silva, Julia Arieira

biodiversity, functionality, and ability to provide essential 

ecosystem services. 

(iv) Prioritizing Free-Flowing Watershed Corridors Across 

the Entire Amazon Basin. Conservation, remediation, and 

restoration initiatives must be mapped and prioritized across 

the entire Amazon Basin. This includes developing specialized 

conservation frameworks that ensure connectivity between 

protected areas and new fluvial reserves on a basin-wide scale. 

Such frameworks must address a range of challenges, including 

monitoring fish populations and ensuring the sustainability 

of fisheries. Equally critical are restoration programs aimed 

at regenerating and reconnecting riparian vegetation and 

floodplain areas with rivers, streams, and wetlands. Moreover, 

the adoption of innovative technologies is crucial for 

developing more effective water treatment solutions, which 

are vital for maintaining water quality, ensuring ecological 

flows, and restoring the health of freshwater ecosystems.

(v) Pursuing Inclusive Engagement and Community-

Based Management for Successful Conservation.Ending 

all deforestation (legal and illegal) and preventing forest 

degradation can restore the Amazonian carbon sink, even in 

the face of global climate change. Implementing large-scale 

forest protection measures would maintain the existing carbon 

stocks, while an advancing and ambitious program of forest 

restoration would capture and store an additional 15-30 billion 

tonnes of CO2 in Amazonian forests by 2050. 

(vi) Ensuring Freshwater Connectivity Through 

Transnational Collaboration and Support. Each Amazonian 

country must develop and implement national public policies 

for freshwater ecosystems, recognizing rivers, streams, riparian 

vegetation, and wetlands not merely as resources, but as unique 

ecosystems providing essential services. In addition, it is crucial 

to establish transnational agreements between Amazonian 

countries to preserve natural free-flowing watershed corridors.
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Recommendations 

(i) Halt Construction of New Dams and Implement 
Alternative Sources of Renewable Energy

Adopt a moratorium on the construction of new dams 

and consider obsolete and inefficient dams for removal. 

Optimize existing hydroelectric schemes and carry out 

strategic environmental evaluations with other sources 

of renewable energy, such as solar, wind, hydrokinetic 

and biomass application.

(ii) Expand Water Treatment and Pollution Control

Urgently invest in water treatment infrastructure, 

enforce pollution control policies, reforest and 

regenerate riparian vegetation, as it serves as natural 

filtration systems, and strengthen monitoring efforts to 

reestablish water course connectivity.

(iii) Invest in Science, Technology, Innovation, and 
Water Literacy

Urgently invest in science, technology, and innovation 

to enhance mapping and monitoring of resources and 

ecosystems, providing crucial data to support cross-

disciplinary research and local governance in addressing 

stressors and solutions on Amazonian Freshwater 

Ecosystems.

(iv) Align Deforestation and Degradation Reduction 
Strategies with Climate Policy

Integrate climate change mitigation and adaptation 

policies into regional development planning, aligning 

them with strategies to protect and reduce deforestation, 

including riparian and floodplain deforestation and the 

degradation of Amazon forests and other freshwater 

ecosystems.

(v) Empower IPLCs in Freshwater Management

Support the leadership of Indigenous Peoples and 

Local Communities in freshwater co-management 

initiatives and conservation, respect cultural diversity, 

and integrate Indigenous knowledge into governance 

structures, decision making processes, and scientific 

innovation.

(vi) Establish New Conservation Frameworks

Discuss and promote new conservation frameworks 

designed specifically for freshwater ecosystems 

(e.g., creation of Fluvial Community Reserves). Such a 

framework is more likely to succeed if it is developed 

through collaborative community-based partnerships.

(vii) Strengthen Transnational Governance and 
Coordination for River Protection

Develop and strengthen existing transnational 

governance agreements that allow protected free-

flowing watershed corridors. National governments 

must unify policies to maintain and restore ecosystem 

connectivity, recognizing the importance of community-

based conservation.

a. THE AMAZON BASIN: THE LARGEST 
AND MOST DIVERSE FRESHWATER 
NETWORK ON THE PLANET

Amazon Freshwater Characteristics, 
Functions, and Biodiversity

Covering 7.3 million km² throughout eight 
countries, the Amazon basin is rich in biodiversity 
shaped by millions of years of changes in lowland 
rivers and floodplains [2, 3 4]. At its estuary, the 
Amazon River discharges 220,000 m³ per second 
[5]. Its complex hydrological network includes 

about 15,000 catchments and various freshwater 
ecosystems such as tectonic lakes, swamps, 
wet meadows, Andean freshwater marshes, 
mangroves, meander lagoons, riparian wetlands, 
and expansive floodplains [6, 7, 8].

Approximately 30% of the Amazon region 
consists of wetlands, which include various 
ecosystems at the land-water interface, 
distinguished by factors like flood frequency and 
duration [9, 10], seasonal rainfall variability [11, 12, 
13], depth of water, water chemistry, vegetation, 
and associated wildlife [14]. Floodplains of large 



rivers cover about 750,000 km², or 11% of the 
Amazon Basin [15]. These floodplains are crucial 
for nutrient cycling and sustaining biodiversity, 
with Andean sedimentary rivers creating fertile 
white-water várzeas and ancient shield-draining 
rivers forming nutrient-poor igapós [9, 10]. At 
the estuary, the river’s discharge creates unique 
environments where river and sea waters mix, 
supplying abundant nutrients and sediments 
offshore and serving as a source of nursery, 
breeding grounds, and areas for the growth 
and development of freshwater, estuarine, and 
marine fish species [16]. Consequently, coastal 
wetlands, such as mangroves in Amapá, Pará, 
and Maranhão, demand urgent actions for 
biodiversity protection [14, 16].

Connectivity among these river systems 
and wetlands is essential for the Amazon’s 
ecological integrity and resilience, as it 
regulates hydrological pulses, ensures the 
distribution of rainfall and seed dispersal, and 
guarantees fisheries and feeding [8]. Ultimately, 
the essence of the Amazon hinges upon the 
interconnectedness of its waterways, facilitating 
the exchange of water, nutrients, sediments, and 
biodiversity [17].

The Multidimensional Connections of the 
Amazon 

We can identify distinct dimensions of water 
connectivity within the basin. For the purposes 
of this policy brief, we consider six dimensions 
of connectivity through the basin, taking into 
consideration ecological, seasonal, and socio-
economic aspects: 

	 1. Longitudinal Dimension: linking the 
Andes with the rest of Amazon and with the 
Atlantic Ocean. The Andes-Amazon-Atlantic 
transition is a crucial zone of hydrological 
connection [18] (Figure 1). The region at the 
Andes feet experiences high rainfall rates (up 

6,000 and 7,000 mm.yr-1) due to interactions 
between regional atmospheric circulation and 
temperature and moisture contrasts [19, 20, 
21, 22]. These rains result in erosion, providing 
nearly all of the suspended sediment load 
observed in the Amazon Basin. It is estimated 
that the Amazon River exports between 550 
and 1500 Mt.yr-1 of sediment load to the Atlantic 
Ocean [23], with 90% of total originating in 
the Andes [24]. Also, many species depend 
on this transition zone for their life cycles, 
including long migration journeys related to fish 
reproduction that sustain fisheries throughout 
the basin [25]. 

Figure 1. The Sangay Volcano, located in the Ecuadorian Andes, 
and the Upano River, a tributary of the Marañon basin within 
the Amazon Watershed, exemplify four critical hydrological 
connections between the Andes and the lowland Amazon: 
longitudinal, lateral, vertical, and temporal (Photo:  Jorge Juan 
Anhalzer).
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	 2. Lateral Dimension: connecting 
rivers, forests, and wetlands to provide 
conditions for numerous species to strive. 
Seasonal fluctuations of the water table (Figure 
2) create interconnected corridors during high-
water periods that facilitate species migration 
and seed dispersal between rivers and lakes 
with the floodplain. These corridors also serve 
as a refuge during low-water periods [26], 
allowing organisms such as fish and aquatic 
mammals to seek optimal conditions for 
survival [27, 28, 29]. Moreover, floodplains store 
and transport water, sediments, and nutrients 

during high water periods, thus sustaining 
fishery resources [26]. Lastly, the evolutionary 
interaction between fish-tree fruits in the 
Amazon highlights the critical role of river-
floodplain connectivity for plant recruitment 
dynamics and diversity [30, 31].

	 3. Vertical Dimension: encompassing 
interactions between wetlands, aerial rivers, 
and groundwater. Approximately 25-50% 
of the total annual rainfall observed in the 
tropical Andes originates from Amazon tree 
transpiration [32]. Part of the produced 

Figure 2. Seasonal cycles of river discharges (m3 s-1). Fluctuations in river discharge drive pronounced seasonal changes in the water 
level of large Amazon rivers, causing them to overflow their banks into adjacent floodplains [103, 104, 105]. 



moisture reaching east of the Andes — 10 to 
23 billion liters per day [33] — is transported 
southward by winds flowing in low altitudes, 
known as “aerial rivers”, reaching as far as 
Argentina and supplying water to other major 
river basins on the continent, thus supporting 
agriculture and providing drinking water [5]. 
Moreover, rainfall infiltrates the ground and 
contributes to the formation of large aquifers 
like the Alter do Chão-Içá system, with a 
recharge amount estimated to be at least 
236,400 and 350,000 m3.yr-1 [4, 34]. 

	 4. Temporal Dimension: linking rivers 
responses over time in which past events 
shape current and future river function and 
diversity. In the Amazon, temporal connectivity 
is fundamentally linked to the region’s complex 
hydrological cycle (Figure 2). The lowlands, for 
instance, are subject to a yearly flood pulse, 
marked by pronounced low and high-water 
periods, while the Andean-Amazon experiences 
variable flows that can change on a daily basis 
[35]. This flood regime not only shapes the 
river morphology, such as the formation of 
oxbow lakes and main river channels, but it also 
influences organismal behaviors like migrations 
and mast seeding, and affects people’s 
livelihoods through activities such as floodplain 
agriculture and navigation [36]. Therefore, the 
timing and predictability of the flood pulse are 
intimately connected with other dimensions of 
connectivity.

	 5. Biocultural Dimension: 
incorporating the relationships between 
human populations and rivers, and wetlands 
and their aquatic biodiversity, which are 
observed in cultural traditions and beliefs. 
Indigenous populations hold worldviews  
(Box 1), linguistic conceptualizations, spiritual 
connections and experiential knowledge of 
Amazonian Freshwater Ecosystems gained 
over many years [37, 38]. Recently, Indigenous 

and local knowledge systems have been 
combined with scientific knowledge and 
technology to protect and restore freshwaters 
and headwaters through co-management 
experiences and fisheries agreements, 
including cases in which Indigenous people 
have been meaningfully involved in decision-
making processes [30, 39].

	 6. Bioeconomic Dimension: 
acknowledging the provision of food, 
transportation, drinking water, and economic 
activities by freshwater ecosystems. Fish are 
the main providers of protein, micronutrients, 
and income for both rural and urban 
households across the Amazon Basin [40]. The 
estimated total extraction of fish in the Amazon 
basin is between 422,000 and 473,000 tons 
per year [41]. There is also a great significance 
of freshwater ecosystems for Amazonian agro-
forestry crops and resources of great economic 
importance, such as cacao, açaí palm, and 
many others, which have been domesticated or 
semi-domesticated by Indigenous people and 
local communities [42]. Also, fluvial transport 
plays a crucial role in accessing remote areas, 
enabling services such as public health to meet 
the demands of rural areas [43]. And lastly, 
outdoor recreation and tourism allow visitors to 
share these relationships with the watershed 
resources.

These different dimensions of water 
connectivity are facing significant challenges 
due to human action that promotes the 
fragmentation of aquatic habitats, thus pushing 
the biome rapidly to a point of no return. We 
strongly advocate for conservation initiatives 
that ensure open connectivity within the basin, 
considering all dimensions, while ensuring 
equity and inclusion in conversation planning, 
policies, and practices.
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b. MAIN DRIVERS OF FRAGMENTATION 
OF FRESHWATER ECOSYSTEMS 

Fragmentation within the Amazonian 
Freshwater Ecosystems is one of main reasons 
behind loss of surface water area, habitats, 
biodiversity, and consequently, of ecosystem 
services essential to the well-being of human 
populations. This fragmentation occurs due 
to human activities that either lead to physical 
barriers that alter the rivers courses, or 
through chemical barriers [44] that degrade 
the quality of the water. 

Physical Fragmentation

The primary threat to freshwater connectivity 
is river fragmentation due to hydropower 
development and construction of dams [45], 
which currently impacts rivers ranging from 
the Andes to large basins like the Marañon, 
Madeira, Napo, Tapajós, Tocantins, and 

Box 1: Integrating Traditional 
Knowledge in Freshwater 
Ecosystem Conservation

Traditional knowledge provides invaluable 
insights into the conservation of freshwater 
ecosystems, guiding sustainable management 
practices and fostering respect for the services 
these ecosystems offer. This approach stems 
from the worldview of many Indigenous 
peoples, who perceive natural resources not 
as possessions but as entities inhabited by 
spirits or guardians, whether in plants, animals, 
minerals, or rocks [97].

For the Munduruku people, interacting with 
forests and rivers also involves engaging 
with the spirits that reside within them. Such 
interactions necessitate negotiating harmonious 
relationships and respectful exchanges with 

all beings, enabling the articulation of multiple 
coexisting worlds.

Traditional knowledge is crucial for 
comprehending complex ecological processes 
that might otherwise remain unexplained, 
passed down through generations. A pertinent 
example is the identification of a spawning area 
in the Beni basin, derived from fishermen’s 
observations of dorado pairs near the Altamirani 
community. This localized knowledge facilitated 
the characterization of the area, leading to 
the identification of at least 22 other potential 
dorado spawning zones [98]. Such insights are 
vital for management decisions in these regions 
and underscore the significance of integrating 
protected areas with traditional ecological 
knowledge.

Ucayali [28, 46, 47, 48] (Figure 3). Dams alter 
riverine habitats by blocking the movements 
of organisms and changing hydrological 
patterns, sediment discharge [28, 48, 49, 
50], temperature, and nutrient balance [51], 
affecting biodiversity, causing declines in 
migratory species [28, 52] and massive tree 
mortality [53]. Additionally, studies show that 
some lowland dams in the Amazon may have a 
considerable contribution in greenhouse gas 
emissions per unit of electricity generated 
(median = 133 kg CO2eq MWh−1) [54].

Road construction has similar impacts to dams, 
as it alters seasonal streams, thus disrupting 
connectivity, blocking the passage of aquatic 
life [55] and influencing sediment deposition 
in aquatic systems [56]. Additionally, the land-
cover change related to roads contributes to 
CO2 emissions [57]. The loss of freshwater and 
its biodiversity in Amazonian ecosystems is also 
strongly related to environmental degradation, 



Figure 3. Existing and planned hydroelectric plants in the Amazon pose significant threats to freshwater ecosystems by disrupting their 
vital connections. Adapted from [103, 106].

including water diversion dams captured for 
agricultural activities and livestock. Land-
cover change related to cattle ranching and crop 
production has affected about 15% (1985-2020) 
of the Amazon basin, particularly into the south 
and southwestern region, where native forest 
has been replaced by grassland and savannas 
[58, 59]. 

Mining impacts freshwater ecosystems directly 
by altering stream and river morphology due 
to excavations, increased sediment loads, and 
necessitating large-scale deforestation [61]. 
In Brazil, for instance, mining was responsible 
for the loss of 11,670 km2 of Amazonian forests 
between 2000 and 2015 [62].

Deforestation associated with these 
infrastructure projects and economical 
activities impact Amazonian Freshwater 
Ecosystems in different ways. Deforestation 
causes loss of vegetation evapotranspiration 
(20-41%) and increases temperatures (28-
45%) [63], thereby decreasing the amount of 
water vapor in the atmosphere [64], harming 
vertical connectivity, and increasing the risk of 
droughts and fires [65]. With less rainfall, there 
is also less surface runoff and less sediment 
exported from the Andes to the Amazon, 
increasing tree mortality [66, 67].



Ongoing climate change also impacts 
connectivity within the basin. Climate models 
predict a future precipitation decline, particularly 
in the southern basin, heightening the region’s 
vulnerability [68, 70]. This can lead to many 
streams and rivers ceasing to flow for several 
months in certain areas, which can result in local 
extinctions of species [70]. Additionally, as the 
region gets warmer, even small increases in water 
temperature are sufficient to push many fish 
species beyond their thermal tolerance limits 
[71, 72, 73]. Such changes lead to adaptations 
in aquatic fauna and flora, but can also result in 
higher mortality rates among fish [71] and aquatic 
mammals [74], just as was observed during the 
severe drought of 2023 (See more in Droughts in 
the Amazon Policy Brief)..

Fragmentation of Amazonian Freshwater 
Ecosystems holds a dangerous synergy 
with overfishing [75]. Even though there 
aren’t robust fish stock assessment models 
yet, intensive fishing pressure throughout 
the basin appears to be among the primary 
drivers for declining fish stocks [76, 77] and 
biodiversity depletion [78]. For instance, dams 
and overfishing combined are responsible for a 
sharp depletion of the stock of goliath catfishes 
(Brachyplatystoma rousseauxii), a migratory 
species [75, 79].

All these forms of fragmentation are followed 
by significant socio-economic and socio-
cultural impacts, which affect riverine and 
urban communities as well as  Indigenous 
people. Research has shown that changes in 
diets and fisheries can affect food security and 
consumption patterns among all Amazonian 
populations [80, 81, 82], exacerbating 
malnutrition [83] and causing psychological and 
spiritual effects in Indigenous populations [84]. 

Chemical Barriers

Chemical pollution is a major cause of water 
degradation and decreased water quality 
in the Amazon. Notably, many Amazonian 
cities lack water treatment plants, leading to 
the discharge of domestic and industrial 
sewage directly into water bodies, posing 
significant contamination risks [85, 86]. 
This issue underlines the critical need for 
comprehensive strategies to manage and 
treat wastewater effectively in the region. 
Also, inadequate disposal of solid waste 
results in the leaching of liquids generated 
by their decomposition, which reach water 
bodies and may be highly toxic to the 
environment and to human health.

Oil spills affect organisms in many ways, 
leading to negative effects such as impaired 
development in aquatic plants [87] or 
intoxication in fish [88, 89]. Exposure to oil 
spills for humans may lead to negative impacts 
such as effects on mental health, physical 
and physiological effects, toxic effects in the 
immunological and endocrine systems, and 
damages in genetic material [90]. 

Besides altering river morphology, mining 
introduces pollutants such as mercury 
[61], which easily accumulates in the 
soil, litterfall, and leaves, or enters and 
magnifies in the food chain, potentially 
causing devastating impacts on wildlife [91]. 
Currently, all Amazonian countries have 
reported environmental and human exposure 
to mercury [92]. The latest study shows 
that more than a fifth of the fish sold in 17 
cities in six states of the Amazon region of 
Brazil contains dangerous levels of it [93]. 
In humans, long term exposure to either 
inorganic or organic mercury can permanently 
damage the brain and kidneys, as well as bring 
harm to developing fetuses [94]. 



c. SOLUTIONS TO MAINTAIN AND 
RESTORE THE AMAZON’S FRESHWATER 
ECOSYSTEMS

Concrete actions and the formulation of public 
policies are proposed here to address the 
pressing need for preserving and enhancing 
freshwater connectivity in the Amazon, 
encompassing longitudinal, lateral, vertical, 
temporal, biocultural, and bioeconomic 
linkages.

The following actions needed are put forth:

1. Halt Dam Construction and Implement 
Other Sources of Renewable Energy

1a. Cease Construction of Dams
Dams small or large should not be 
built in the Amazon. We advocate for a 
moratorium on dam construction within 
the basin. 

1b. Adopt Innovative, Integrated, 
Alternative, and Renewable energy
The region holds significant potential 
for renewable energy generation, 
including photovoltaic (PV) systems, 
small-scale hydropower plants using 
hydrokinetic turbines, and modern 
biomass applications. Wind energy can 
also be harnessed in specific areas and 
the Atlantic coast offers opportunities for 
tidal energy and ocean thermal energy 
conversion (OTEC). (See more in New 
Infrastructure for the Amazon Policy Brief)

1c. Consider the Removal of Dams for 
Connectivity Restoration
The removal or retrofitting of obsolete 
and inefficient dams should be 
considered for restoring connectivity in 
river ecosystems. Dams that significantly 

disrupt local economies, contribute 
excessive CO2 and Methane emissions 
to the atmosphere, and obstruct fish 
migration should be targeted. Retrofitting 
may involve replacing river-wide barriers 
with free-flowing diversion structures 
that allow for natural river processes. 
Additionally, to enhance efficiency, 
existing dams with large reservoirs could 
be augmented with alternative energy 
solutions, such as floating photovoltaic 
systems.

2. Expand Water Treatment and Pollution 
Control

2a. Urgent Investment in Water Treatment 
Infrastructure
Investing in water treatment infrastructure 
is crucial to effectively manage domestic 
and industrial effluents from Amazonian 
cities and rural communities. In Manaus, 
the largest city in the Amazon, only 21.8% 
of sewage is treated, with the remainder 
being discharged directly into water 
bodies. Throughout the basin, numerous 
cities lack any sewage treatment facilities 
whatsoever.

2b. Halt Illegal Mining and Strengthen 
Monitoring and Enforcement
Address mercury contamination from 
illegal and artisanal gold mining through 
enhanced governance, rigorous 
enforcement, and protection of conserved 
areas and Indigenous lands. This approach 
should include banning or restricting 
the use of heavy machinery on mining 
barges. Additionally, stringent monitoring 
mechanisms should be established, 
alongside penalties for activities that 
contribute to freshwater degradation and 
pollution. Increased investment is also 
necessary to regulate the mercury trade 



across Amazon hubs. Moreover, ensuring 
transparency and accountability within 
gold supply chains is crucial to curbing 
the circulation of illegally sourced gold in 
international markets.

2c. Promote Natural Regeneration of 
Riparian Buffer Zones
Efforts should be directed toward 
restoring and maintaining riparian buffer 
zones with native plant species along river 
corridors. These riparian buffers retain 
sediments, favor successional processes, 
and serve as natural filtration systems, 
mitigating influx of pollutants into water 
bodies while promoting biodiversity and 
ecological resilience.

3. Invest in Science, Technology, Innovation, 
and Water Literacy

3a. Enhance Monitoring of Freshwater 
Ecosystems
It is imperative to monitor and map 

key aspects that are unique to these 
ecosystems: hydrology, chemistry 
diversity, life-history of organisms, 
food web dynamics, critical ecosystem 
process, fish stocks, and the relationship 
between water-use by agro-industry and 
water table, among others.

3b. Invest in Technologies to Avoid 
Degradation
We advocate for investment in 
transdisciplinary research that develops 
technological solutions tailored to 
address unique challenges in fisheries, 
floodplain production, and conservation 
at various scales (Box 2). There is a crucial 
need for initiatives aimed at assisting 
miners in transitioning to mercury-
free extraction methods, remediating 
areas degraded by mercury mining, 
and exploring energy alternatives to 
hydropower as well as advanced water 
treatment solutions.

Box 2: Technology and Nature-
Based Solutions: Pathways Out of 
Degradation

Investments in research and innovation have 
brought forward technologies that preserve 
the social and economic benefits of traditional 
extractive activities while offering alternatives 
that minimize environmental degradation. For 
instance, the use of cyanogenic plants like bitter 
cassava has shown potential for gold leaching, 
representing a less impactful mining alternative 
[99]. Replacing mercury with local plants could 
mark a substantial move towards sustainable 
development in the region, particularly if these 
technologies are tailored to local conditions.

Furthermore, aquaculture holds significant 

potential for providing protein both locally and 
internationally, thereby fostering social and 
economic development. The implementation of 
biofloc systems in aquaculture can reduce feed 
costs, decrease water usage through reduced 
water exchange rates, and replace fish meal and 
oil in animal feed, thus combating overfishing 
[100].

Additionally, there are successful cases 
of alternative energy sources in Amazonia 
that could reduce the region’s reliance on 
hydroelectric dams. For example, 12 villages 
in Ecuador’s eastern provinces, belonging to 
the Mukucham family, now depend on solar 
panels for transportation, powering schools, and 
supporting ecotourism [101].



3c. Facilitate Knowledge Exchange and 
Promote Water Literacy
Develop public policies to enable the 
exchange of scholars, researchers, and 
practitioners within the Amazon region. 
Additionally, implement educational 
programs in public schools to teach about 
water and the unique characteristics 
of these ecosystems, encouraging 
collaboration between students and 
researchers.

4. Align Deforestation and Degradation 
Reduction Strategies with Climate Policy

4a. Stop Deforestation and Degradation
Urgent action is required to significantly 
stop deforestation and degradation of 
riparian and floodplain forests and other 
freshwater ecosystems. Forest restoration 
over terra-firme degraded pastures is 

also important for freshwater ecosystems. 
There must be a greater distinction 
between roads that are important for local 
people and those which open up forest 
frontiers and encourage land grabbing. 
Avoiding selective logging and buffering 
forest edges with regenerating forests 
can help preserve microclimates, reduce 
temperatures, and enable ecosystems to 
retain their resilience.

4b. Encourage and Support Local 
Management Efforts to Address Climate 
Change
Local strategies that promote the 
maintenance of free-flowing rivers (Figure 4) 
can enhance the resilience of aquatic 
ecosystems to climate change and extreme 
weather events, such as severe droughts 
and floods. 

Figure 4. Community-Based Management for Conservation and Socio-Political Resilience in Freshwater Ecosystems [107]. How does it work?



their effectiveness and promotes cultural 
preservation.

5c. Implement Local and Regional 
Public Policies for the Sustainable 
Management of Fisheries
Enable the exchange of successful 
regional practices and strategies in 
fisheries management to prevent the 
depletion of fish stocks respecting the 
carrying capacity of the ecosystem and 
the patterns of migratory fish (Box 3). This 
must be coupled with an enhanced and 
wide basin effort in monitoring fish stocks.

Box 3: Fluvial Community Reserves: 
A Model for Transnational River 
Conservation

River systems, though critical for biodiversity 
and ecosystem services, often lack the 
protection afforded to terrestrial environments. 
Recognizing rivers as conservation entities 
is essential for addressing these disparities. 
The concept of Fluvial Community Reserves 
proposes a novel conservation model that 
integrates the protection of river ecosystems 
with the empowerment of local communities 
who depend on them.

In Southeast Asia, the success of Community-
based Freshwater Fish Reserves exemplifies 
this approach [102]. Local involvement in 
management, which blends traditional practices 
with modern conservation techniques, has led 
to significant ecological improvements. For 
instance, in Thailand, designated no-take zones 
around critical spawning areas have successfully 

rejuvenated fish populations, bolstering 
sustainable fishing and enhancing overall river 
health.

Applying this model in the Amazon could 
establish a transnational framework for 
conserving riverine ecosystems vital 
to biodiversity and local communities. 
Implementing Fluvial Community Reserves 
across the Amazon basin, especially in 
transboundary rivers, could enhance ecological 
connectivity and resource integrity. This 
initiative would necessitate collaborative inter-
country efforts to synchronize conservation 
strategies with the socio-economic dynamics 
of indigenous and local populations, backed by 
robust legal and financial support. Additionally, 
fostering institutional agreements and adaptive 
management practices would be crucial for the 
sustainability of these reserves.

5. Empower Indigenous Peoples and Local 
Communities in Freshwater Management

5a. Encourage, Empower, and Support 
Community Conservation
Indigenous people and local communities, 
urban and rural, must be protagonists of 
the conservation of freshwater ecosystems, 
particularly through the designation of 
protected watershed corridors. 

5b. Integrate Indigenous and Local 
Knowledge
The traditional knowledge of local and 
indigenous communities regarding the 
management and use of freshwater 
ecosystems must be integrated into 
conservation strategies, as it enhances 



6. Establish New Conservation Frameworks

6a. Shift the Amazon Conservation 
Paradigm
It is necessary to expand the conservation 
focus centered on terra-firme forests to 
include strategies specifically tailored for 
the conservation of freshwater ecosystems 
in the Amazon. This requires a protection 
model at the basin level, from springs 
to floodplain areas. Fragmentation of 
connectivity strongly occurs in the middle 
Amazon River, the Tapajós River, the Xingu 
River and other important waterways in 
the basin. For these rivers, it is essential 
to maintain or reforest uninterrupted 
freshwater connectivity corridors (FCC), 
especially for long-distance migrants 
such as several species of fish and turtles 
(migrations > 500 km) [28].

6b. Develop a Catchment-based 
Conservation Framework for the Whole 
Basin
This framework must establish protected 
freshwater connectivity corridors of 
longitudinal and lateral connectivity, 
thus conserving a variety of productive 
aquatic ecosystems and its biodiversity. A 
whole basin management strategy could 
use a multiple-use zoning framework 
[95], integrating various freshwater 
ecosystems inside and outside protected 
areas.

6c. Establishment of Fluvial Community 
Reserves
This new conservation framework must 
support Indigenous people and local 
communities to sustainably co-manage 
resources. Therefore, we advocate for the 
concept of Fluvial Community Reserves, 
which integrate conservation efforts with 

the sustainable management of resources 
linked to these ecosystems (Box 3).

7. Establish Transnational Governance for 
River Protection

7a. Transnational Governance Agreements
Developing transnational agreements 
for regional governance is essential to 
safeguard free-flowing rivers along national 
boundaries. Cross-border collaboration 
efforts are needed to regulate and control 
mining activities, implement renewable 
energy alternatives and appropriate 
infrastructure projects with minimized 
impacts, and ensure Indigenous peoples’ 
rights to territory

7b. Collaborative Governance Structures
Establishing collaborative governance 
structures involving science institutions, public 
management agencies, local communities, 
and the private sector are vital to ensure 
sustainable management of freshwater 
resources. Examples of collaborative 
partnerships in the Amazon include the 
BR-163 participatory planning process and 
the development of river floodplain co-
management in the Lower Amazon region 
[96]. Once again, the OTCA is an appropriate 
governance body for this purpose.

7c. Ensure Indigenous Rights
Furthermore, such governance structures 
should include environmental, social, and 
governance safeguards in line with the 
highest standards of Indigenous rights, 
including their right to free and prior 
informed consent (FPIC) as required by the 
ILO Convention 169, the UN Declaration on 
the Rights of Indigenous Peoples, and by 
the UN Human Rights Council Res. 39/12.
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